Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  1. Create an IBakeInputRuntime and fill it with the RadSystemCore and InputWorkspace of each Enlighten system.
  2. For each Enlighten system, create an IBakeInputSystem using all the Radiosity objects of the Enlighten system. This is required later in the process in order to fit the Enlighten lit instances to the bake system instances. Set the resolution of the IBakeInputSystem to the resolution of the Enlighten lightmap via an IBakeInputProperties object passed to the IBakeInputSystem::SetBakeProperties method.
  3. For each Enlighten system, call IBake::CreateRuntimeLighting to create an IBakeRuntimeLighting from:
    1. the IBakeInputSystem that you just made
    2. the IPrecompSystemDuster
    3. the IPrecompPackedSystem
    4. the global IBakeInputLighting
  4. For each runtime lighting you made:
    1. For each bake system representing the output lightmaps:
      1. Call IBake::UpdateRuntimeLighting to apply the light and albedo information for each bake system to the Enlighten system.
    2. Call IBake::FinaliseRuntimeLighting
  5. Call IBake::RunEnlightenSolver; this takes all the information and spins a small Enlighten Runtime until the lighting values settle. This is run only once as it contains information about every system in the bake.
  6. For each bake system, call IBake::BakeSystemIndirect and extract the indirect lighting from the IBakeOutputSystemIndirect it creates. Optionally pass in a BakeSystemResource object and a IBakeInputRayOriginPositions to be able to enable visibility-aware upsampling with the identically named baking property.


Excerpt
hiddentrue



Final Gather light baking

...

  1. For each IBakeInputSystem, call IBake::BakeSystemFinalGather.
  2. Extract the FP16 output textures from the resulting IBakeOutputSystemFinalGather objects.


Excerpt
hiddentrue



Ambient occlusion

  1. For each BakeSystemResource, call IBake::BakeSystemAO.
  2. Extract the FP16 output textures from the resulting IBakeOutputSystemAO objects.


Excerpt
hiddentrue



Direct light baking for probes

  1. First, copy lighting information into an IBakeInputLighting object.
  2. Now, for each probe set represented by an IPrecompInputProbeSet, create an IBakeVisibilityBuffer with the IBake API. You also need to pass in a BakeSystemResource object, with all the systems that can influence the direct lighting for the probes. This operation is slow; therefore if only the lights have changed (and not the geometry) you can pass in an IBakeVisibilityBuffer from a previous run and it will be updated.
  3. Call IBake::BakeProbeSetDirect() to create the IBakeOutputProbeSet. Use the IBakeOutputProbeSet::GetOutput() method to retrieve the SH coefficients of all probes in the probe set.


Excerpt
hiddentrue



Indirect light baking for probes

  1. First follow the steps described in Indirect light baking.
  2. Now, for each probe in a probe set, use the IBakeSolvedRuntime::GetSolvedProbe() method of IBakeSolvedRuntime to retrieve the SH coefficients.


Excerpt
hiddentrue



Baked Radiosity Normal Texture

...

  1. For each BakeInputSystem, call IBake::BakeSystemRadiosityNormal, providing the BakeSolvedRuntime for all Enlighten systems.
  2. Extract the FP16 output textures from the resulting IBakeOutputSystemRadiosityNormal objects.


Excerpt
hiddentrue



Message reporting and error handling

...